Abstract
The maximal covering location problem (MCLP) and the partial set covering location problem (PSCLP) are two fundamental problems in facility location and have widespread applications in practice. The MCLP determines a subset of facilities to open to maximize the demand of covered customers subject to a budget constraint on the cost of open facilities; and the PSCLP aims to minimize the cost of open facilities while requiring a certain amount of customer demand to be covered. Both problems can be modeled as mixed integer programming (MIP) formulations. Due to the intrinsic NP-hardness nature, however, it is a great challenge to solve them to optimality by MIP solvers, especially for large-scale cases. In this paper, we present five customized presolving methods to enhance the capability of employing MIP solvers in solving the two problems. The five presolving methods are designed to reduce the sizes of the problem formulation and the search tree of the branch-and-cut procedure. For planar problems with an extremely huge number of customers under realistic types of facility coverage, we show that the number of customers in the reduced problems can be bounded above by a quadratic polynomial of the number of facilities. By extensive numerical experiments, the five presolving methods are demonstrated to be effective in accelerating the solution process of solving the MCLP and PSCLP. Moreover, they enable to solve problems with billions of customers, which is at least one order of magnitude larger than those that can be tackled by previous approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.