Abstract

Owing to the generation of heterogeneous glycoproteins in cells, it is highly difficult to study glycoprotein-mediated biological events and to develop biomedical agents. Thus, general and efficient methods to prepare homogeneous glycoproteins are in high demand. Herein, we report a general method for the efficient preparation of homogeneous glycoproteins that utilizes a combination of genetic code expansion and chemoselective ligation techniques. In the protocol to produce glycan-defined glycoproteins, an alkyne tag-containing protein, generated by genetic encoding of an alkynylated unnatural amino acid, was quantitatively coupled via click chemistry to versatile azide-appended glycans. The glycoproteins produced by the present strategy were found to recognize mammalian cell-surface lectins and enter the cells through lectin-mediated internalization. Also, cell studies exhibited that the glycoprotein containing multiple mannose-6-phosphate residues enters diseased cells lacking specific lysosomal glycosidases by binding to the cell-surface M6P receptor, and subsequently migrates to lysosomes for efficient degradation of stored glycosphingolipids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call