Abstract
A drug-drug interaction or drug synergy is extensively utilised for cancer treatment. However, prediction of drug-drug interaction is defined as an ill-posed problem, because manual testing is only implementable on small group of drugs. Predicting the drug-drug interaction score has been a popular research topic recently. Recently many machine learning models have proposed in the literature to predict the drug-drug interaction score efficiently. However, these models suffer from the over-fitting issue. Therefore, these models are not so-effective for predicting the drug-drug interaction score. In this work, an integrated convolutional mixture density recurrent neural network is proposed and implemented. The proposed model integrates convolutional neural networks, recurrent neural networks and mixture density networks. Extensive comparative analysis reveals that the proposed model significantly outperforms the competitive models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.