Abstract
A stable poly[2-acrylamido-2-methyl-1-propanesulfonic acid-co-poly(ethylene glycol) diacrylate] monolith was synthesized inside a 75-microm-i.d. capillary by photoinitiated copolymerization with water, methanol, and ethyl ether as porogens. The resulting monolith was evaluated for strong cation-exchange capillary liquid chromatography of both synthetic and natural peptides. Although the monolith possessed relatively strong hydrophobicity due to the use of 2-acrylamido-2-methyl-1-propanesulfonic acid as one monomer, the monolith had a high dynamic binding capacity of 157 microequiv of peptide/mL, or 332 mg of cytochrome c/mL. Exceptionally high resolution resulting from extremely narrow peaks was obtained, resulting in a peak capacity of 179 when using a shallow salt elution gradient. Although a second, naturally formed gradient might contribute to the sharp peaks obtained, high efficiency was mainly due to the use of poly(ethylene glycol) diacrylate as a biocompatible cross-linker.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.