Abstract

Due to the high-density (200) crystal planes and abundant active sites, cubic platinum nanomaterials have become outstanding electrocatalysts in promoting fuel cell reactions. However, because of the fact that the facet-controlled synthesis is difficult, it is still a grand challenge to synthesize a sequence of Pt-based nanocubes via a universal method. Herein, we report a general and simple eco-friendly solvothermal method to prepare (200)-enclosed PtM nanocubes. Different from the other nanomaterials, nanocubes are conducive to mass transfer. Moreover, the synergistic and electronic effects between M and Pt are profitable to improve the utilization of precious metals. We used (200)-encapsulated nanocrystals to evaluate their electrocatalytic performance towards glycerol and ethylene glycol oxidation reactions in an alkaline medium. In particular, Pt4Co nanocubes showed superior mass activities in glycerol and ethylene glycol oxidation reactions, which are 6.2- and 5.0-fold higher than those obtained for commercial Pt/C catalysts, respectively. Meanwhile, Pt4M catalysts manifested excellent stability in the endurance test, which is attributed to the alloying effect promoting the electrooxidation of intermediates. Our study provides an ideal method for the construction of Pt-based bimetallic nanocubes, which can be used for anode reactions of polyol fuel cells and beyond.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.