Abstract
To achieve the better electrocatalytic activity and stability of Pd-base catalysts for ethylene glycol and glycerol oxidation reactions, a novel Pd-base binary PdCo oxides nanoparticles (PdPdO-CoOx) was synthesized by in-situ oxidation of PdCo precursor. The strategy was simple, mild, green and efficient. The prepared nanoparticles exhibited a mutually connected, fused irregular nanoparticles in TEM. The as-synthesized PdPdO-CoOx (1:4) nanoparticles displayed prominent catalytic activity (5.82 A mgPd−1 for ethylene glycol and 5.16 A mgPd−1 for glycerol) for ethylene glycol and glycerol oxidation reactions in alkaline solution compared to the commercial Pt/C (1.64 A mgPt−1 for ethylene glycol and 1.48 A mgPt−1 for glycerol) catalyst. The improved electrocatalytic activity of PdPdO-CoOx catalyst mainly ascribes to the producing Strong Metal-Support Interactions (SMSI) between PdO-CoOx and Pd nanoparticles, the synergistic effect between PdO and CoOx and the presence of CoOx promoved hydroxyl adsorption at lower potentials. Combined with the simple synthetic method, lower cost and good performance, PdPdO-CoOx is a promising catalyst for direct fuel cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.