Abstract

Neuroprosthesis refers to implantable medical devices which can replace injured biological functions in the brain. One of the core problems in neuroprosthesis study is to construct a neural signal transformation model from one cortical area to another. Since the brain encodes and transmits information in spike trains, spiking neural network (SNN) can be an ideal choice for neuroprosthesis modeling. This paper proposes a spiking neuron point-process model (SNPM), which receives spike times as input, and is capable of modeling nonlinear interactions between cortical areas. The proposed SNPM can be implemented on neuromorphic chips for low-energy computing, thus has potential for clinical applications. Experiments show that SNPM can accurately reconstruct functional relationships from PMd (dorsal premotor cortex) to M1 (primary motor cortex) areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.