Abstract

Herein, a carbon membrane and Au nanoparticles were combined to improve the efficiency of photoelectrocatalytic water splitting over a TiO2 nanotube arrays film (TiO2 NTAF). Two different ternary nanostructures were constructed by hydrothermal and photochemical deposition processes. One was carbon membrane bridged Au nanoparticles and TiO2 nanotube arrays (Au/C/TiO2 NTAF), while the other was Au nanoparticles sandwiched between carbon membrane and TiO2 nanotube arrays (C/Au/TiO2 NTAF). The two structures exhibited enhanced visible light harvesting ability, but they showed distinctly different photoelectric properties. The unique microstructure of C/Au/TiO2 NTAF resulted in a much higher reduction of the electron cloud density of Au nanoparticles as carrier recombination centers, which were responsible for its poor photoelectrochemical performance. However, a champion photocurrent of Au/C/TiO2 NTAF was observed (0.984 mA cm−2), indicating superior ability of the photoelectrocatalytic water splitting. The great enhancement was attributed to multiple carriers transport paths, which can efficiently utilize the sensitization of the carbon membrane and the surface plasmon resonance effect of the Au nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.