Abstract
Bismuth (III) oxide (Bi2O3) has been highly studied as a photocatalyst for green hydrogen production due to its low band gap, yet its efficiency requires enhancement. This study synthesizes a defective and strained black Bi2O3 by severe straining under high pressure, via a high-pressure torsion method, to improve its photocatalytic hydrogen production. The material rich in oxygen vacancies exhibits a ten-fold improvement in water splitting with excellent cycling stability. Such improvement is due to improved light absorption, narrowing band gap and reduced irradiative electron-hole recombination. Moreover, the valence band bottom energy positively increases by straining leading to a high overpotential for hydrogen production. This research highlights the potential of vacancies and lattice strain in developing dopant-free active catalysts for water splitting.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have