Abstract
In this study, polyacrylonitrile (PAN_P) nanofibers (NFs) were fabricated by electrospinning. The PAN_P NFs membrane was functionalized with diethylenetriamine to prepare a functionalized polyacrylonitrile (PAN_F) NFs membrane. TiO2 nanoparticles (NPs) synthesized in the laboratory were anchored to the surface of the PAN_F NFs membrane by electrospray to prepare a TiO2 NPs coated NFs membrane (PAN_Coa). A second TiO2/PAN_P composite membrane (PAN_Co) was prepared by embedding TiO2 NPs into the PAN_P NFs by electrospinning. The membranes were characterized by microscopic, spectroscopic and X-ray techniques. Scanning electron micrographs (SEM) revealed smooth morphologies for PAN_P and PAN_F NFs membranes and a dense cloud of TiO2 NPs on the surface of PAN_Coa NFs membrane. The attenuated total reflectance in the infrared (ATR-IR) proved the addition of the new amine functionality to the chemical structure of PAN. Transmission electron microscope images (TEM) revealed spherical TiO2 NPs with sizes between 18 and 32 nm. X-ray powder diffraction (XRD) patterns and energy dispersive X-ray spectroscopy (EDX) confirmed the existence of the anatase phase of TiO2. Surface profilometry da-ta showed increased surface roughness for the PAN_F and PAN_Coa NFs membranes. The adsorption-desorption isotherms and hysteresis loops for all NFs membranes followed the IV -isotherm and the H3 -hysteresis loop, corresponding to mesoporous and slit pores, respectively. The photocatalytic activities of PAN_Coa and PAN_Co NFs membranes against methyl orange dye degradation were evaluated and compared with those of bare TiO2 NPs.The higher photocatalytic activity of PAN_Coa membrane (92%, 20 ppm) compared to (PAN_Co) NFs membrane (41.64%, 20 ppm) and bare TiO2 (49.60%, 20 ppm) was attributed to the synergy between adsorption, lower band gap, high surface roughness and surface area.
Highlights
Hazardous industrial and agrochemical wastes left untreated pose an immediate threat to drinking water [1]
Embedding TiO2 NPs in NFs (PAN_Co) during electrospinning without changing the spinning conditions resulted in elongated beaded fibers that appeared as dark clouds in the Scanning electron micrographs (SEM) micrographs
SEM micrograph showed a dense cloud of TiO2 NPs on the surface for prepare a TiO2 NPs coated NFs membrane (PAN_Coa)
Summary
Hazardous industrial and agrochemical wastes left untreated pose an immediate threat to drinking water [1]. Studying the results published in the literature, it can be assumed that the combination of photolytically active ceramics and polymeric NFs offers polymer NFs will have advantages in both membrane filtration and photocatalysis of the industrial and agrochemical wastes. This strategy enables the development of hybrid NFs membranes with improved removal efficiency and selectivity, leading to a novel water treatment solution [22,23]. Since electrospun PAN-based NFs have low density and are flexible, they can float on a liquid or fixed at the desired location in reactors [28,29]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.