Abstract
Manganese co-precipitated with goethite (Mn-FeOOH) is ubiquitous within (sub-)surface environments, which are considered one of the most important sinks for phosphorus pollution management. Accordingly, various mole ratios of Mn-FeOOHs are synthesized and characterized by XRD, FE-SEM, FTIR, BET, XPS, hysteresis loop, acid–base titration and zero potential. According to XRD and FESEM images, the substitution of Mn causes subtle alterations in the microstructure and crystal structure of goethite, and the morphology of Mn-FeOOHs is transformed from needle-shaped goethite to a short-rod-shaped rough surface with increasing Mn substitution. Based on the analysis of BET and acid–base titration, the substitution of Mn into goethite significantly improved the surface area, pore volume, surface properties and active sites of goethite, thereby establishing a theoretical basis for effective subsequent adsorption. Batch experiment results show that the removal rate of phosphate decreases with the increasing solution pH, indicating that acidic groundwater conditions are more conducive to the removal of phosphate. In addition, the adsorption of phosphate on Mn-FeOOHs is independent of ionic strength, indicating that the inner-sphere surface complexation predominated their adsorption behaviors. The isotherm experiment results showed that Mn-G15 exhibits the strongest adsorption capacity for phosphate at pH 5.5 and T = 318 K, with a maximum adsorption capacity of 87.18 mg/g. These findings highlighted the effect of Mn content on the fixation of phosphate onto Mn-FeOOHs from (sub-)surface environments in pollution management.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.