Abstract
Since the first password-based authenticated key exchange (PAKE) was proposed, it has enjoyed a considerable amount of interest from the cryptographic research community. To our best knowledge, most of proposed PAKEs based on Diffie-Hellman key exchange need some public information, such as generators of a finite cyclic group. However, in a client-server environment, not all servers use the same public information, which demands clients authenticate those public information before beginning PAKE. It is cumbersome for users. What's worse, it may bring some secure problems with PAKE, such as substitution attack. To remove these problems, in this paper, we present an efficient password-based authenticated key exchange protocol without any public information. We also provide a formal security analysis in the nonconcurrent setting, including basic security, mutual authentication, and forward secrecy, by using the random oracle model.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have