Abstract

An efficient method for palladium-catalyzed homocoupling reaction of terminal alkynes in the synthesis of symmetric diynes is presented. The results showed that both Pd(OAc)(2) and CuI played crucial roles in the reaction. In the presence of 2 mol % Pd(OAc)(2), 2 mol % CuI, 3 equiv of Dabco, and air, homocoupling of various terminal alkynes afforded the corresponding symmetrical diynes in moderate to excellent yields, whereas low yields were obtained without either Pd(OAc)(2) or CuI. Moreover, high TONs (turnover numbers; up to 940 000 for the reaction of phenylacetylene) for the homocoupling reaction were observed. Under similar reaction conditions, cross-coupling of 1-iodo-4-nitrobenzene with phenylacetylene was also carried out smoothly in quantitative yield. However, the presence of CuI disfavored the palladium-catalyzed Sonogashira cross-coupling reactions of the less active aryl iodides and bromides. In the presence of 0.01-2 mol % Pd(OAc)(2), a number of aryl iodides and bromides were coupled with terminal alkynes in good to excellent yields. It is noteworthy that this protocol employs mild, efficient, aerobic, copper-free, and ligand-free conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call