Abstract

Emerging next generation memories, NVRAMs, such as Phase-change RAM (PRAM), Ferroelectric RAM (FRAM), and Magnetic RAM (MRAM) are rapidly becoming promising candidates for large scale main memory because of their high density and low power consumption. Many researchers have attempted to construct a main memory with NVRAMs, in order to make up for the limits of NVRAMs. However, we find that the preexisting page caching algorithms, such as LRU, LIRS, and CLOCK-Pro, are often sub-optimal for NVRAMs due to its DRAM-oriented design including uniform access latency and unlimited endurance. Consequently, the algorithms cannot be directly adapted to the hybrid main memory architecture with PRAM. To mitigate this design limitation, we propose a new page caching algorithm for the hybrid main memory. It is designed to overcome the long latency and low endurance of PRAM. On the basis of the LRU replacement algorithm, we propose a prediction of page access pattern and migration schemes to maintain write-bound access pages to DRAM. The experiment results have convinced us that our page caching algorithm minimizes the number of the write access of PRAM while maintaining the cache hit ratio. The results show that we can reduce the total write access count by a maximum of 52.9% and the consumed energy by 19.9%. Therefore, we can enhance the average page cache performance and reduce the endurance problem in the hybrid main memory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.