Abstract

This paper proposes an efficient paddy field mapping method using object-based image analysis and a bitemporal data set acquired by Landsat-8 Operational Land Imager. In the proposed approach, image segmentation is the first step and its quality has a serious impact on the accuracy of paddy field classification. In order to improve segmentation quality, a new segmentation algorithm based on a frequently used method, fractal net evolution approach, is developed, with improvement mainly in merging criteria. In order to automate the process of scale parameter determination, an unsupervised scale selection method is utilized to determine the optimal scale parameter for the proposed image segmentation approach. After segmentation, four types of object-based features including geometric, spectral, textural, and contextual information are extracted and input into the subsequent classification procedure. By using a random forest classifier, paddy fields and nonpaddy fields are separated. The proposed image segmentation method and the final classification result are both quantitatively evaluated. Our segmentation method outperformed two popular algorithms according to three supervised evaluation criteria. The classification result with overall accuracy of 91.00% and kappa statistic of 0.82 validated the effectiveness of the proposed framework. Further analysis on feature importance indicated that spectral features made the most contribution as compared to the other three types of object-based features.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call