Abstract
To gain adoption in the composites manufacturing sector, forming process models must be assessed for their suitability in analysing representative preform architectures processed in industrial production environments. A computationally efficient, mutually constrained Shell-Membrane (S-M) finite element approach is developed to predict the anisotropic, non-linear deformation of a woven textile preform in a Double Diaphragm Forming (DDF) process. Formability of a thick, multi-ply aerostructures preform is numerically investigated and experimentally correlated using a high-volume, industrial forming process. The effects of fibre orientation, preform thickness, and inter-ply friction on defect formation are investigated. The process model identifies in-plane axial fibre compression as the primary mechanism leading to macroscopic buckling defects and infers the underlying defect morphology. Defect formation is shown to be weakly correlated with the state of the fabric shear strain field. The study concludes that buckling defects are mitigated by reducing tangential contact friction between preform plies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.