Abstract

III/V semiconductors containing small amounts of nitrogen (N; dilute nitrides) are discussed in the context of different solar cell and laser applications. The efficiency of these devices is negatively affected by carbon (C) incorporation, which comes either from the direct C–N bond in the N precursor unsymmetrical 1,1-dimethylhydrazine (UDMHy) used conventionally or from the alkyl groups of the conventional precursors for gallium (Ga), indium and arsenic (As) containing carbon. This C is incorporated together with the N due to the strength of the C–N bond. A further important issue in dilute nitride growth is the very low N incorporation efficiency in the crystal from UDMHy, which can be as little as 1% of the N supplied in the gas phase. Therefore, new metal organic chemicals have to be synthesized and their growth characteristics and suitability for dilute nitride growth have to be explored. This work presents the chemical di-tertiary-butyl-arsano-amine (DTBAA), which was synthesized, purified and tested as an N precursor for metal organic vapor phase epitaxy (MOVPE). Computational investigations show β-hydrogen and isobutane elimination to be the main reaction channel in the gas phase with high reaction barriers and absence of small fragments containing C as products. The loss of N via N2, as in UDMHy, can be excluded for unimolecular reactions of DTBAA. The Ga(NAs)/GaAs heterostructures were grown by MOVPE as initial test material and a systematic N incorporation study is presented in this paper. It is shown that high quality Ga(NAs) can be grown using DTBAA. The N incorporation was confirmed by high resolution X-ray diffraction and photoluminescence studies. All samples grown exhibit as grown room temperature photoluminescence and smooth surface morphologies. Furthermore, DTBAA shows extremely high N incorporation efficiency, which makes this molecule a very promising candidate for further research into dilute nitride material growth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call