Abstract
Ce 3+ and Yb 3+ co-activated GdBO 3 phosphors were prepared by a conventional solid-state reaction method. X-ray powder diffraction, photoluminescent spectra and decay curves were used to characterize their structural and luminescent properties. An efficient near-infrared (NIR) quantum cutting (QC) from the phosphors was observed, which involved the emission of two low-energy NIR photons (around 971 nm) from an absorbed ultra-violet (UV) photon at 358 nm via a cooperative energy transfer (CET) from Ce 3+ to Yb 3+ ions. The theoretical quantum efficiency was calculated and the maximum efficiency approached up to 164% before reaching the critical concentration quenching threshold. Our results demonstrated that these phosphors might find potential application in improving the efficiency of silicon based solar cells.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have