Abstract

An efficient near-infrared (NIR) downconversion has been demonstrated in CaSc2O4: Ce(3+)/Yb(3+) phosphor. Doping concentration optimized CaSc2O4: 1%Ce(3+)/5%Yb(3+) shows stronger NIR emission than doping concentration also optimized typical YAG: 1%Ce(3+)/5%Yb(3+) under 470 nm excitation. The NIR emission from 900 to 1100 nm is enhanced by a factor of 2.4. In addition, the main emission peak of Yb(3+) in the CaSc2O4 around 976 nm matches better with the optimal spectral response of the c-Si solar cell. The visible and NIR spectra and the decay curves of Ce(3+): 5d → 4f emission were used to demonstrate the energy transfer from Ce(3+) ions to Yb(3+) ions. The downconversion phenomenon has been observed under the direct excitation of Ce(3+) ions. On analyzing the dependence of energy transfer rate on Yb(3+) ion concentration, we reveal that the energy transfer (ET) from Ce(3+) ions to Yb(3+) ions in CaSc2O4 occurs mainly by the single-step ET process. Considering that the luminescence efficiency of CaSc2O4: Ce(3+) is comparable to that of commercial phosphor YAG: Ce(3+), the estimated maximum energy transfer efficiency reaches 58% in the CaSc2O4: 1%Ce(3+)/15%Yb(3+) sample, indicating that CaSc2O4: Ce(3+)/Yb(3+) sample has the potential in improving the conversion efficiency of c-Si solar cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call