Abstract

Localized surface plasmon resonance (LSPR) with a sharp field gradient and extremely strong field intensity is very attractive for near-field optical nano-tweezers manipulating tiny bio-objects with sizes ranging from sub-10 nm to micrometers. To lower the power consumption of optical trapping and improve the accessibility of LSPR for the targets, we propose and study a plasmonic bowtie notch design with assisted periodic curved grooves. By generating and coupling extra surface plasmon polariton waves into the LSPR, the presented design herein can significantly reduce the required power consumption in experiments for stably trapping single and multiple polystyrene spheres. We believe the idea and results presented in this paper would be helpful in realizing highly efficient nano-tweezers in the plasmonic circuit on-chip.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.