Abstract
Adaptive sampling is an iterative process for the construction of a global approximation model. Most of engineering analysis tools computes multiple parameters in a single run. This research proposes a novel multi-response adaptive sampling algorithm for simultaneous construction of multiple surrogate models in a time-efficient and accurate manner. The new algorithm uses the Jackknife cross-validation variance and a minimum distance metric to construct a sampling criterion function. A weighted sum of the function is used to consider the characteristics of multiple surrogate models. The proposed algorithm demonstrates good performance on total 22 numerical problems in comparison with three existing adaptive sampling algorithms. The numerical problems include several two-dimensional and six-dimensional functions which are combined into single-response and multi-response systems. Application of the proposed algorithm for construction of aerodynamic tables for 2D airfoil is demonstrated. Scaling-based variable-fidelity modeling is implemented to enhance the accuracy of surrogate modeling. The algorithm succeeds in constructing a system of three highly nonlinear aerodynamic response surfaces within a reasonable amount of time while preserving high accuracy of approximation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.