Abstract

For a more efficient algorithm, we introduce staggered time discretization to improve the previous method (Pan et al., 2017), fully decoupled monolithic projection method with one Poisson equation (FDMPM-1P), to solve time-dependent natural convection problems. The momentum and energy equations are discretized using the Crank–Nicolson scheme at the staggered time grids, in which temperature and pressure fields are evaluated at half-integer time levels (n+12), while the velocity fields are evaluated at integer time levels (n+1). Numerical simulations of two-dimensional (2D) Rayleigh–Bénard convection show that the proposed method is more computationally efficient and stable than FDMPM-1P, while preserving the second-order spatial and temporal accuracy. Further, the proposed method provides accurate predictions of 2D Rayleigh–Bénard convection under different thermal boundary conditions for a Rayleigh number up to 1010, three-dimensional turbulent Rayleigh–Bénard convection in the range of 1×105–2×107 in horizontal periodic domain, and three-dimensional turbulent Rayleigh–Bénard convection in the range of 1×106–1×107 in bounded domain. Finally, we theoretically confirmed that the proposed method is second-order in time and it is more stable than FDMPM-1P for small Ra.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.