Abstract

This work proposes a computationally efficient high-fidelity modelling framework for analysis of damage in composites subjected to quasi-static indentation. A ply-by-ply modelling approach is adopted, and a new semi-discrete continuum damage model is used for intra-ply cracking that allows for cracks to grow independent of the ply mesh pattern. This feature greatly simplifies the meshing effort since the requirement of a ply-oriented mesh and imposition of tie constraints at mesh-mismatched ply interfaces is eliminated. The model is further enhanced to realise kinematic interactions between the cracked and uncracked material domains at the constitutive level. Inter-ply delamination is simulated using cohesive elements. Through a challenging problem of static indentation on a quasi-isotropic laminate, it is shown that the model can capture solution-dependent multiple discrete ply cracks and detailed crack-delamination interaction, but with reduced computational time and complexity, compared to a reference model with ply-oriented mesh and pre-seeded cracks at known locations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call