Abstract
Subsampling plays a crucial role in tackling problems associated with the storage and statistical learning of massive datasets. However, most existing subsampling methods are model-based, which means their performances can drop significantly when the underlying model is misspecified. Such an issue calls for model-free subsampling methods that are robust under diverse model specifications. Recently, several model-free subsampling methods have been developed. However, the computing time of these methods grows explosively with the sample size, making them impractical for handling massive data. In this article, an efficient model-free subsampling method is proposed, which segments the original data into some regular data blocks and obtains subsamples from each data block by the data-driven subsampling method. Compared with existing model-free subsampling methods, the proposed method has a significant speed advantage and performs more robustly for datasets with complex underlying distributions. As demonstrated in simulation experiments, the proposed method is an order of magnitude faster than other commonly used model-free subsampling methods when the sample size of the original dataset reaches the order of 107. Moreover, simulation experiments and case studies show that the proposed method is more robust than other model-free subsampling methods under diverse model specifications and subsample sizes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.