Abstract

We demonstrate an efficient and continuous microwave photon-to-electron converter with large quantum efficiency (83%) and low dark current. These unique properties are enabled by the use of a high kinetic inductance disordered superconductor, granular aluminium, to enhance light-matter interaction and the coupling of microwave photons to electron tunneling processes. As a consequence of strong coupling, we observe both linear and nonlinear photon-assisted processes where two, three, and four photons are converted into a single electron at unprecedentedly low light intensities. Theoretical predictions, which require quantization of the photonic field within a quantum master equation framework, reproduce well the experimental data. This experimental advancement brings the foundation for high-efficiency detection of individual microwave photons using charge-based detection techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.