Abstract
To improve the quality and efficiency of hypergraph-based matrix partitioners, we investigate high-quality matchings in column intersection graphs of large sparse binary matrices. We show that such algorithms have a natural decomposition in an integer-weighted graph-matching function and a neighbor-finding function and study the performance of 16 combinations of these functions. We improve upon the original matching algorithm of the Mondriaan matrix partitioner: by using PGA’, we improve the average matching quality from 95.3% to 97.4% of the optimum value; by using our new neighbor-finding heuristic, we obtain comparable quality and speedups of up to a factor of 19.6.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.