Abstract
It has been widely documented that the sampling and resampling steps in particle filters cannot be differentiated. The <i>reparameterisation trick</i> was introduced to allow the sampling step to be reformulated into a differentiable function. We extend the <i>reparameterisation trick</i> to include the stochastic input to resampling therefore limiting the discontinuities in the gradient calculation after this step. Knowing the gradients of the prior and likelihood allows us to run particle Markov Chain Monte Carlo (p-MCMC) and use the No-U-Turn Sampler (NUTS) as the proposal when estimating parameters. We compare the Metropolis-adjusted Langevin algorithm (MALA), Hamiltonian Monte Carlo with different number of steps and NUTS. We consider three state-space models and show that NUTS improves the mixing of the Markov chain and can produce more accurate results in less computational time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.