Abstract

The No-U-Turn Sampler (NUTS) is a relatively new Markov chain Monte Carlo (MCMC) algorithm that avoids the random walk behavior that common MCMC algorithms such as Gibbs sampling or Metropolis Hastings usually exhibit. Given the fact that NUTS can efficiently explore the entire space of the target distribution, the sampler converges to high-dimensional target distributions more quickly than other MCMC algorithms and is hence less computational expensive. The focus of this study is on applying NUTS to one of the complex IRT models, specifically the two-parameter mixture IRT (Mix2PL) model, and further to examine its performance in estimating model parameters when sample size, test length, and number of latent classes are manipulated. The results indicate that overall, NUTS performs well in recovering model parameters. However, the recovery of the class membership of individual persons is not satisfactory for the three-class conditions. Findings from this investigation provide empirical evidence on the performance of NUTS in fitting Mix2PL models and suggest that researchers and practitioners in educational and psychological measurement should benefit from using NUTS in estimating parameters of complex IRT models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call