Abstract

Spin-transfer torque random access memory (STT-RAM) is a promising emerging memory technology in the future memory hierarchy. However, its unique reliability challenges, i.e., the asymmetric bit failure mechanism at different bit flippings, have raised significant concerns in its real applications. Recent studies even show that the common memory error repair “remedies” cannot efficiently address them. In this article, we for the first time systematically study the potentials of the strong low-density parity-check (LDPC) code for combating such unique asymmetric errors in both single-level-cell (SLC) and multi-level-cell (MLC) STT-RAM designs. A generic STT-RAM channel model suitable for the SLC/MLC designs, is developed to analytically calibrate all the accumulated asymmetric factors of the write/read operations. The key initial information for LDPC decoding, namely asymmetric log-likelihood ratio (A-LLR), is redesigned and extracted from the proposed channel model, to unleash the LDPC’s asymmetric error correcting capability. LDPC codec is also carefully designed to lower the hardware cost by leveraging the systematic-structured parity check matrix. Then two customized short-length LDPC codes—(585,512) and (683,512)—augmented from the semi-random parity check matrix and the A-LLR based asymmetric decoding, are proposed for SLC and MLC STT-RAM designs, respectively. Experiments show that our proposed LDPC designs can improve the STT-RAM reliability by at least 10 2 (10 4 ) when compared to the existing error correction codes (ECCs) for the SLC (MLC) design, demonstrating the feasibility of LDPC solutions on STT-RAM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call