Abstract

This paper presents efficient second-order kinetic schemes on unstructured meshes for both compressible unsteady and incompressible steady flows. For compressible unsteady flows, a time-dependent gas distribution function with a discontinuous particle velocity space at a cell interface is constructed and used for the evaluations of both numerical fluxes and conservative flow variables. As a result, a compact scheme on the unstructured meshes is developed. For incompressible steady flows, a continuous second-order gas-kinetic BGK type scheme is presented, for which the time-dependent gas distribution function with a continuous particle velocity is used on unstructured meshes. The efficiency of the schemes lies in the fact that the slopes of the flow variables inside each cell can be constructed using values of the flow variables within that cell only without involving neighboring cells. Therefore, even with the stencil of a first-order scheme, a high resolution method is constructed. Numerical examples are presented which are compared with the benchmark solutions and the experimental measurements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call