Abstract

In this paper, for the first time a third-order compact gas-kinetic scheme is proposed on unstructured meshes for the compressible viscous flow computations. The possibility to design such a third-order compact scheme is due to the high-order gas evolution model, where a time-dependent gas distribution function at cell interface not only provides the fluxes across a cell interface, but also presents a time accurate solution for flow variables at cell interface. As a result, both cell averaged and cell interface flow variables can be used for the initial data reconstruction at the beginning of next time step. A weighted least-square procedure has been used for the initial reconstruction. Therefore, a compact third-order gas-kinetic scheme with the involvement of neighboring cells only can be developed on unstructured meshes. In comparison with other conventional high-order schemes, the current method avoids the Gaussian point integration for numerical fluxes along a cell interface and the multi-stage Runge–Kutta method for temporal accuracy. The third-order compact scheme is numerically stable under CFL condition CFL≈0.5. Due to its multidimensional gas-kinetic formulation and the coupling of inviscid and viscous terms, even with unstructured meshes, the boundary layer solution and vortex structure can be accurately captured by the current scheme. At the same time, the compact scheme can capture strong shocks as well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.