Abstract

In this paper, an original Jacobi implementation is considered for the solution of sparse linear systems of equations. The proposed algorithm helps to optimize the parallel implementation on GPU. The performance analysis of GPU-based (using CUDA) algorithm of the implementation of this algorithm is compared to the corresponding serial CPU-based algorithm. Numerical experiments performed on a set of matrices arising from the finite element discretization of various equations (3D Laplace equation, 3D gravitational potential equation, 3D Heat equation) with different meshes, illustrate the performance, robustness and efficiency of our algorithm, with a speed up to 23$$\times $$× in double-precision arithmetics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.