Abstract

We describe an efficient quantum embedding framework for realistic ab initio density matrix embedding theory (DMET) calculations in solids. We discuss in detail the choice of orbitals and mapping to a lattice, treatment of the virtual space and bath truncation, and the lattice-to-embedded integral transformation. We apply DMET in this ab initio framework to a hexagonal boron nitride monolayer, crystalline silicon, and nickel monoxide in the antiferromagnetic phase, using large embedded clusters with up to 300 embedding orbitals. We demonstrate our formulation of ab initio DMET in the computation of ground-state properties such as the total energy, equation of state, magnetic moment, and correlation functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.