Abstract

Developing an effective strategy to economically exploitation of pectinase, as one of the most widely used enzymes in food industry, is of utmost importance. Herein, pectinase was covalently immobilized onto polyethylene glycol grafted magnetic nanoparticles via trichlorotriazine with high loading efficiency. The generated immobilized pectinase showed enhanced catalytic activity, improved operational stability, and easily reusability. Thermal and pH stabilities studies showed improved performance of immobilized pectinase especially at extreme points. Compared to free enzyme, the noticeably lower Km and higher vmax values of immobilized pectinase demonstrated the enhanced catalytic activity of this enzyme after immobilization. Besides, the immobilized enzyme exhibited excellent reusability and stability by retaining up to 55 and 94% of its initial activity after 10 recycles and 125 days storage at 25 °C, respectively. Moreover, turbidity reduction occurred up to 59% in treated pineapple juice with immobilized pectinase, suggesting applicability of this system in juice and food-processing industries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.