Abstract
Non-fullerene acceptors have recently attracted tremendous interest due to their potential as alternatives to fullerene derivatives in bulk-heterojunction solar cells. Nevertheless, physical understanding of charge carrier generation and transfer mechanism that occurred at the interface between the non-fullerene molecule and donor polymer is still behind their enhanced photovoltaic performance. Here we report examples of a non-planar perylene dimer (TP) as an electron acceptor and achieve a power conversion efficiency of 6.29% in a fullerene-free solar cell. Photoluminescence (PL) measurements show high quenching efficiency driven by the excitons of both conjugated polymer and TP molecule, respectively, indicating efficient electron and hole transfer, which can support a highly intermixed phase of blends measured by atomic force microscopy (AFM) and grazing incident wide-angle X-ray diffraction (GIWAXS). Femtosecond transient absorption spectroscopy (fs-TAS) reveals that the fast exciton dissociation process from TP molecule to donor polymer contributes to additionally increasing current density, leading to stronger incident photon to current efficiency in the visible region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.