Abstract

We propose an efficient stepwise adiabatic merging (SAM) method to generate many-body singlet states in antiferromagnetic spin-1 bosons in concatenated optical superlattices with isolated double-well arrays, by adiabatically ramping up the double-well bias. With an appropriate choice of bias sweeping rate and magnetic field, the SAM protocol predicts a fidelity as high as 90% for a sixteen-body singlet state and even higher fidelities for smaller even-body singlet states. During their evolution, the spin-1 bosons exhibit interesting squeezing dynamics, manifested by an odd-even oscillation of the experimentally observable squeezing parameter. The generated many-body singlet states may find practical applications in precision measurement of magnetic field gradient and in quantum information processing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.