Abstract

This paper presents a single-beam atomic magnetic field measurement gradiometer, which is a highly sensitive magnetic field gradient measuring instrument based on the atom spin-exchange relaxation-free (SERF) effect. The reflective detection optical path structure is adopted. The spin precession signals of an atom under incident and reflected light are different. There is also a difference in the corresponding magnetic field distribution. The final measurement of magnetic field gradients is conducted based on the different magnetic field distributions. The single-beam high-sensitive magnetic field gradiometers based on the atomic SERF effect are more sensitive than conventional two-probe magnetic field gradiometers or two-beam magnetic field gradiometers. The gradiometers are not affected by a difference in the detected optical power in the single-beam detection light measurements. The reflector uses an angular cone prism for two-dimensional magnetic field gradient measurements and is simple to construct. The single-beam highly sensitive magnetic field gradient measurement instrument based on the atomic SERF effect has a reflective detection optical path structure. It uses a quarter-wave plate to achieve the initial signal phase elimination of both incident and reflected signal and an angular cone prism as a reflector to achieve two-dimensional measurement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call