Abstract
Nonlinear vibrational spectroscopy profits from broadband sources emitting in the molecular fingerprint region. Yet, broadband lasers operating at wavelengths above 7 μm have been lacking, while traditional cascaded parametric frequency down-conversion schemes suffer from exceedingly low conversion efficiencies. Here we present efficient, direct frequency down-conversion of femtosecond 100-kHz, 1.03-μm pulses to the mid-infrared from 7.5 to 13.3 μm in a supercontinuum-seeded, tunable, single-stage optical parametric amplifier based on the wide-bandgap material Cd0.65Hg0.35Ga2S4. The amplifier delivers near transform-limited, few-cycle pulses with an average power > 30 mW at center wavelengths between 8.8 and 10.6 μm, at conversion efficiencies far surpassing that of optical parametric amplification followed by difference-frequency generation or intrapulse difference-frequency generation. The pulse duration at 10.6 μm is 101 fs corresponding to 2.9 optical cycles with a spectral coverage of 760–1160 cm−1. CdxHg1−xGa2S4 is an attractive alternative to LiGaS2 and BaGa4S7 in small-scale, Yb-laser-pumped, few-cycle mid-infrared optical parametric amplifiers and offers a much higher nonlinear figure of merit compared to those materials. Leveraging the inherent spatial variation of composition in CdxHg1−xGa2S4, an approach is proposed to give access to a significant fraction of the molecular fingerprint region using a single crystal at a fixed phase matching angle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.