Abstract

In this paper, an ultrathin Huygens' metasurface is designed for generating an orbital angular momentum (OAM) beam. The Huygens' metasurface is a double-layered metallic structure on a single-layer PCB. Based on induced magnetism, the Huygens' metasurface achieves the abilities of available near-complete transmission phase shift around 28 GHz. According to the principle of vortex wave generation, a Huygens' metasurface is designed, implemented and measured. The simulated and measured results show that the dual-polarized OAM transmitted waves with the mode l = 1 can be efficiently generated on a double-layered Huygens' metasurface around 28 GHz. The measured peak gain is 23.4 dBi at 28 GHz, and the divergence angle is 3.5°. Compared with conventional configurations of OAM transmitted beam generation, this configuration has the advantages of high gain, narrow divergence angle, and low assembly cost. This investigation will provide a new perspective for engineering application of OAM beams.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.