Abstract

Cystic fibrosis (CF) is a lethal autosomal recessive disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Nuclease-mediated precise gene editing (PGE) represents a promising therapy for CF, for which an efficient strategy that is free of viral vector, drug selection, and reporter enrichment (VDR free) is desirable. Here we compared different transfection methods (lipofectamine versus electroporation) and formats (plasmid DNA versus ribonucleoprotein) in delivering the CRISPR/Cas9 elements along with single-stranded oligodeoxynucleotides (ssODNs) to clinically relevant cells targeting major CFTR mutation loci. We demonstrate that, among different combinations, electroporation of CRISPR/Cas9 and guide RNA (gRNA) ribonucleoprotein (Cas9 RNP) is the most effective one. By using this VDR-free method, 4.8% to 27.2% efficiencies were achieved in creating dF508, G542X, and G551D mutations in a wild-type induced pluripotent stem cell (iPSC) line. When it is applied to a patient-derived iPSC line carrying the dF508 mutation, a greater than 20% precise correction rate was achieved. As expected, genetic correction leads to the restoration of CFTR function in iPSC-derived proximal lung organoids, as well as in a patient-derived adenocarcinoma cell line CFPAC-1. The present work demonstrates the feasibility of gene editing-based therapeutics toward monogenic diseases such as CF.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.