Abstract

Room-temperature electronic properties of semiconductors, especially in the case of higher charge densities, are commonly discussed in terms of single-particle excitations -- free electrons and holes. Many-particle effects, such as the formation of excitons (Coulomb-bound electron-hole pairs), are usually seen as low-temperature and low-density phenomena. In this paper, using ultrafast terahertz and photoluminescence measurements, the authors find that under certain conditions typical for wide-band-gap semiconductors, the radiative excitons can be efficiently formed at high charge density and at room temperature. This effect is believed to contribute to the extraordinarily high quantum efficiency of group III nitride light emitters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.