Abstract
In recent years the FFT-based homogenization method of Moulinec and Suquet has been established as a fast, accurate and robust tool for obtaining effective properties in linear elasticity and conductivity problems. In this work we discuss FFT-based homogenization for elastic problems at large deformations, with a focus on the following improvements. Firstly, we exhibit the fixed point method introduced by Moulinec and Suquet for small deformations as a gradient descent method. Secondly, we propose a Newton–Krylov method for large deformations. We give an example for which this methods needs approximately 20 times less iterations than Newton’s method using linear fixed point solvers and roughly $$100$$ times less iterations than the nonlinear fixed point method. However, the Newton–Krylov method requires 4 times more storage than the nonlinear fixed point scheme. Exploiting the special structure we introduce a memory-efficient version with 40 % memory saving. Thirdly, we give an analytical solution for the micromechanical solution field of a two-phase isotropic St.Venant–Kirchhoff laminate. We use this solution for comparison and validation, but it is of independent interest. As an example for a microstructure relevant in engineering we discuss finally the application of the FFT-based method to glass fiber reinforced polymer structures.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have