Abstract

A stacked inverse finite Fourier transform (FFT) algorithm is presented that will efficiently synthesize a discrete random time sequence of N values from only N/2 complex values having a desired known spectral representation. This stacked inverse FFT algorithm is compatible with the synthesis of discrete random time sequences that are used with the more desirable periodic-random type of dynamic testing systems used to compute complex-valued transfer functions by the frequency-sweep method. An application to the generation of large random surface gravity waves by a hinged wavemaker in a large-scale wave flume demonstrates excellent agreement between the desired theoretical spectral representation and the smoothed, measured spectral representation for two types of two-parameter theoretical spectra as a result of the lengthier realization made possible by the stacked FFT algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.