Abstract

BackgroundPolylactic acid (PLA) is one important chemical building block that is well known as a biodegradable and a biocompatible plastic. The traditional lactate fermentation processes need CaCO3 as neutralizer to maintain the desired pH, which results in an amount of insoluble CaSO4 waste during the purification process. To overcome such environmental issue, alkaliphilic organisms have the great potential to be used as an organic acid producer under NaOH-neutralizing agent based fermentation. Additionally, high optical purity property in d-lactic acid is now attracting more attention from both scientific and industrial communities because it can improve mechanical properties of PLA by blending l- or d-polymer together. However, the use of low-price nitrogen source for d-lactate fermentation by alkaliphilic organisms combined with NaOH-neutralizing agent based process has not been studied. Therefore, our goal was the demonstrations of newly simplify high-optical-purity d-lactate production by using low-priced peanut meal combined with non-sterile NaOH-neutralizing agent based fermentation.ResultsIn this study, we developed a process for high-optical-purity d-lactate production using an engineered alkaliphilic Bacillus strain. First, the native l-lactate dehydrogenase gene (ldh) was knocked out, and the d-lactate dehydrogenase gene from Lactobacillus delbrueckii was introduced to construct a d-lactate producer. The key gene responsible for exopolysaccharide biosynthesis (epsD) was subsequently disrupted to increase the yield and simplify the downstream process. Finally, a fed-batch fermentation under non-sterile conditions was conducted using low-priced peanut meal as a nitrogen source and NaOH as a green neutralizer. The d-lactate titer reached 143.99 g/l, with a yield of 96.09 %, an overall productivity of 1.674 g/l/h including with the highest productivity at 16 h of 3.04 g/l/h, which was even higher than that of a sterile fermentation. Moreover, high optical purities (approximately 99.85 %) of d-lactate were obtained under both conditions.ConclusionsGiven the use of a cheap nitrogen source and a non-sterile green fermentation process, this study provides a more valuable and favorable fermentation process for future polymer-grade d-lactate production.

Highlights

  • Polylactic acid (PLA) is one important chemical building block that is well known as a biodegradable and a biocompatible plastic

  • Lactic acid is listed as one of the top 30 potential building block chemicals produced from biomass; identifying cheap substrate sources and easy handling processes is economically important [8]

  • Our results demonstrate that the addition of sodium acetate stimulated the growth and lactate production of alkaliphilic Bacillus strains

Read more

Summary

Introduction

Polylactic acid (PLA) is one important chemical building block that is well known as a biodegradable and a biocompatible plastic. The traditional lactate fermentation processes need CaCO3 as neutralizer to maintain the desired pH, which results in an amount of insoluble CaSO4 waste during the purification process To overcome such environmental issue, alkaliphilic organisms have the great potential to be used as an organic acid producer under NaOH-neutralizing agent based fermentation. Our goal was the demonstrations of newly simplify high-optical-purity d-lactate production by using low-priced peanut meal combined with non-sterile NaOH-neutralizing agent based fermentation. The use of non-sterile conditions in industrial fermentations would reduce the need for equipment, as well as lower energy consumption and labor costs These factors can be especially important for low-cost, high-volume chemical lactic acid production [5, 11]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.