Abstract

The difficulty of selecting features efficiently in histopathology image analysis remains unresolved. Furthermore, the majority of current approaches have approached feature selection as a single objective issue. This research presents an enhanced multi-objective whale optimisation algorithm-based feature selection technique as a solution. To mine optimal feature sets, the suggested technique makes use of a unique variation known as the enhanced multi-objective whale optimisation algorithm. To verify the optimisation capability, the suggested variation has been evaluated on 10 common multi-objective CEC2009 benchmark functions. Furthermore, by comparing five classifiers in terms of accuracy, mean number of selected features, and calculation time, the effectiveness of the suggested strategy is verified against three other feature-selection techniques already in use. The experimental findings show that, when compared to the other approaches under consideration, the suggested method performed better on the assessed parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.