Abstract
In this paper, stochastic models for fault detection in industrial automation processes are investigated. Thereby, nonlinear, time-variant systems are considered. The basic idea consists in building a probability distribution model and evaluating the likelihood of observations under that model. In contrast to the existing methods, this paper considers the practically important case in which measurement noise is negligible and all process variables are observable. This assumption allows the direct evaluation of a probability distribution for fault detection without approximations such as second order statistics or particles. The main part of this paper deals with adequate models for this probability distribution such as Gaussian and Hidden Markov models. Such models require predictions of the expectation values of the respective probability distributions. Regression models such as (multivariate) linear regression models and neural networks are investigated for this purpose. Evaluations are conducted with respect to prediction accuracies and fault detection capabilities of the employed models. Evaluations show superior results of the novel approach compared to existing fault detection methods, which are based on approximations such as second order statistics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.