Abstract

In this paper, fault detection in piecewise stationary industrial processes is investigated. Such processes can be modeled as sequences of distinct system modes in which the respective expectation values and variances of process variables do not change. In particular, piecewise stationary processes with autonomous transitions between system modes are considered in this work, i.e. processes without observable trigger events such as on/off signals. A Hidden Markov Model (HMM) is employed as underlying system model for such processes. System modes are modeled as hidden state variables with given transition probabilities. Continuous process variables are assumed to be Gaussian distributed with constant second order statistics in each system mode. A novel HMM-based fault detection method is proposed which incorporates the Viterbi algorithm into a fault detection method for hybrid industrial processes. Experimental results for the proposed fault detection method are presented for a module of the Lemgo Smart Factory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.