Abstract
We propose semiparametrically efficient estimators for general integrated volatility functionals of multivariate semimartingale processes. A plug-in method that uses nonparametric estimates of spot volatilities is known to induce high-order biases that need to be corrected to obey a central limit theorem. Such bias terms arise from boundary effects, the diffusive and jump movements of stochastic volatility and the sampling error from the nonparametric spot volatility estimation. We propose a novel jackknife method for bias correction. The jackknife estimator is simply formed as a linear combination of a few uncorrected estimators associated with different local window sizes used in the estimation of spot volatility. We show theoretically that our estimator is asymptotically mixed Gaussian, semiparametrically efficient, and more robust to the choice of local windows. To facilitate the practical use, we introduce a simulation-based estimator of the asymptotic variance, so that our inference is derivative-free, and hence is convenient to implement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.