Abstract

The tumor targeting and stimuli responsiveness behavior of intelligent drug delivery systems imparts effective therapeutic delivery and decreases the toxicity of conventional chemotherapeutic agents in off-target organs. To achieve the receptor targeting and smart drug release, several strategies have been employed to engineer nano-carrier with stimulus sensitivity. In this work, mannose receptor-targeted and matrix metalloproteinase (MMP) responsive gelatin nanoparticles were developed and assessed for its receptor targeting and “on-demand” controlled drug delivery in lung cancer therapeutics. MMPs are protease enzymes and over-expressed in tumorous tissues in all the stages of cancer. The cancer cells also have over-expressed mannose receptors on the cell surface. The surface decoration of gelatin nanoparticles with concanavalin A (con-A) tends to bind with mannose moiety of cell surface glycoproteins which enhances the cancer cell-specific higher uptake of nanoparticles. Gelatin nanoparticles have attracted significant attraction in recent years as a potential drug carrier because of its good biocompatibility and versatile physicochemical properties desirable to deliver the drug. Cisplatin was complexed with the gelatin matrix (CG-NP) to evaluate stimuli responsiveness with the lung cancer cells and its release pattern. In this smart inhalable delivery system, cisplatin loaded gelatin nanoparticles were surface decorated with con-A (CCG-NP). In tumorous cells, con-A coating is expected to enhance mannose receptor-specific cellular internalization of CCG-NP, and subsequently high level of MMP in tumor tissues would help to release cisplatin in response and ensures controlled drug release. The synthesized CCG-NP has shown enzyme triggered drug release and favorable endocytosis after incubation of 12 h compare to uncoated nanoparticles. The efficacy of CCG-NP significantly increased in presence of MMP-2 enzyme in lung cancer cell line A549 cells. It also significantly enhanced reactive oxygen species generation, cell cycle arrest in S and G2/M phase, and apoptosis in cancer cells. Therefore, inhalable CCG-NP promises a pragmatic approach to construct a receptor targeting and an “on-demand” drug delivery system to efficiently deliver the drug at the tumor site only.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call