Abstract
This paper presents a new method for end-to-end Video Question Answering (VideoQA), aside from the current popularity of using large-scale pre-training with huge feature extractors. We achieve this with a pyramidal multimodal transformer (PMT) model, which simply incorporates a learnable word embedding layer, a few convolutional and transformer layers. We use the anisotropic pyramid to fulfill video-language interactions across different spatio-temporal scales. In addition to the canonical pyramid, which includes both bottom-up and top-down pathways with lateral connections, novel strategies are proposed to decompose the visual feature stream into spatial and temporal sub-streams at different scales and implement their interactions with the linguistic semantics while preserving the integrity of local and global semantics. We demonstrate better or on-par performances with high computational efficiency against state-of-the-art methods on five VideoQA benchmarks. Our ablation study shows the scalability of our model that achieves competitive results for text-to-video retrieval by leveraging feature extractors with reusable pre-trained weights, and also the effectiveness of the pyramid. Code available at: https://github.com/Trunpm/PMT-AAAI23.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.